

The Case for READI Regions as Official Economic Planning Regions Report prepared for Indiana Secretary of Commerce David Adams

Phil Powell, Ph.D., IBRC Executive Director Tim Slaper, Ph.D., IBRC Research Director

15 August 2025

Executive Summary

Indiana Executive Order 25-45 seeks a unified regional framework for economic and workforce development. This report recommends adopting the 15 READI regions – formed voluntarily by local governments in 2024 – as the official planning regions. These regions emerged from real-world partnerships and shared labor markets, fostering informal regional governance and strategic collaboration. Compared to state-defined Economic Growth Regions (EGRs) and federally defined Metropolitan Statistical Areas (MSAs), READI regions show nearly equal commuting tightness, a key measure of economic cohesion. While four southern READI regions show weaker internal ties, the overall structure offers lower implementation costs and stronger local alignment. READI regions provide a socially efficient and empirically sound foundation for regional policy, satisfying the goals of the executive order.

Full Report

Indiana Executive Order 25-45 directs the Secretary of Commerce to recommend by the end of 2025 one unified set of demarcated regions for purposes of workforce and economic development policy implementation. Two important conclusions motivate this order. First, state agencies use varying and confusing sets of regional demarcations to delegate administrative oversight, deliver services, and allocate public resources. Unnecessary complexity, overhead, and geographic crossover is created. Second, ease of coordination and collaboration between state government, local jurisdictions, and business is a priority consideration for how regions should be demarcated. To support work that delivers upon this executive order, this study explores the feasibility of Indiana Regional Economic Acceleration and Development Initiative (READI) regions as the state's official regional demarcation for workforce and economic development activities.

Indiana counties, municipalities, and other community entities organically and voluntarily formed themselves into 15 unique regions in 2024 to apply for funds made available by the second round of READI. This iteratively occurred after initial formation of 17 regions for the first round of READI in 2021. Applications for funding required submission of regional strategic plans that grew income, employment, population, and public assets.² Regions self-selected themselves based upon historical partnerships, shared labor markets, and other drivers of regional interconnectivity.3 Geographic boundaries and coalitions of local jurisdictions naturally took shape to minimize the transaction costs of policy execution, leverage institutional similarities, and manage shared public resources. 4 Submission of applications that required a regional strategic plan pressure tested, challenged, and strengthened the ability of jurisdictions to voluntarily form a regional vision and plan for implementation. Through the READI exercise, jurisdictions learned how to work together with no external body dictating the way cooperation should occur. Methods for communication, strategy formulation, project implementation, and negotiation of conflict at a regional level began to develop. This built horizontal trust between local institutions that is as important for future regional economic development in Indiana as talent, capital investment, and infrastructure.5

The reduction in the number of READI regions from 17 for the first round of grants to 15 for the second round of grants is a case in point. The White River, 180 Alliance, and Mt. Comfort regions for round one merged to form the Central Indiana Regional Development Authority for round two. Between the first and second READI rounds, local jurisdictions within the Indianapolis region iteratively learned how to cooperate and collaborate on a larger geographic scale and as a result strengthen their pitch for state resources. The informal linkages that formed can be leveraged in any future state effort to advance regional economic development in Central Indiana.

While organic collaboration between localities formed the boundaries of the READI regions, centralized administrative decision making formed the boundaries of Indiana's Economic Growth Regions (EGRs) and Metropolitan Statistical Areas (MSAs). EGRs were defined during the administration of Governor Mitch Daniels for the purpose of regional economic planning and analysis by the Indiana Department of Workforce Development. The self-revealed geography of regional labor sheds drove and in theory still drives the demarcation of EGRs. In terms of methodology, a candidate demarcation scheme for EGRs is more robust if the population-weighted average percentage of residents commuting to a job in the region where they live is higher. Commuting patterns also drive determination of boundaries for MSAs set by the federal Office of Management and Budget. An outlying county, for example, is included in an MSA if at least 25 percent of employed residents work in the MSA or at least 25 percent of employed workers in the county reside in the MSA. Unlike READI regions, the ability of local jurisdictions to communicate, cooperate, and coordinate does not drive demarcation of EGR or MSA geographical boundaries.

A state is best understood as a set of regional economies. Because of size and physical geography, few states function as one integrated economy. In practice, the economic

development strategy for any state must defer to market activity, industry transformation, and infrastructure planning at a regional level. With a few exceptions like Portland, Seattle, and Minneapolis, governance institutions do not geographically scale beyond the county level. This mismatch between geographic scale in economy and localized governance leaves state governments scrambling to define their own regions for purposes of economic policy implementation, such as for acquisition of federal regional workforce development funds through the Workforce Innovation and Opportunity Act. Definition of a region may meet arbitrary guidelines set in statute, but without a match in geographic scale between governance and economy, the transaction costs required to achieve optimal policy outcomes can be prohibitively high. Lack of formal regional governance means more resources and attention can be spent on achieving regional coordination between counties, cities, and towns – establishment of informal regional governance – than on implementing policy and delivering public goods to end users.

READI regions have already incurred the cost of building informal regional governance institutions. Access to economic development funds incentivized counties, cities, towns, and other local actors to resolve how to work together in 2024. These new informal institutions can be leveraged to reduce the transaction cost of regional economic policy implementation. If READI regions adequately capture regional market activity within their boundaries, then they achieve the desired match of governance and economy in terms of geographic scale. READI regions adequately capture regional market activity if their average measure of robustness matches that of EGRs and MSAs. Robustness equals the employment-weighted average share of residents that work within their region.

The table below summarizes a formal comparison of READI regions (Map 1, page 5) to Indiana EGRs (Map 2, page 6) and MSAs (Map 3, page 7). The robustness score is more accurately defined as commuting tightness. Commuting tightness is the percent of residents in a region who commute to a job in the same region. Maximum tightness is 100 which means all residents work at a job in the region. Minimum tightness is 0 which means all workers commute to a job in another region.

	Number of	Average Tightness	Average Tightness	Lowest
Region Scheme	Regions	(Populated Weighted)	(Not Population Weighted)	Tightness
READI (see Map 1)	15	87.7	81.3	55.2
EGRs (see Map 2)	11	89.1	86.0	68.0
MSAs (see Map 3)	15	86.8	80.3	44.9

Without surprise, EGRs are the most robust because their boundaries are drawn to intentionally maximize average commuting tightness. The robustness of READI regions, surprisingly though, almost matches EGRs with average population weighted tightness being only 1.4% lower. MSAs are the least robust, mainly because of three MSAs tied to central cities outside of Indiana – Chicago, Cincinnati, and Louisville – that generate geographically skewed commuting tightness measures.

The case for use of READI regions as the official workforce and economic development regions for Indiana is empirically strong. The difference in commuting tightness between READI regions and EGRs is insignificant. The robustness of geographic capture of regional economic activity is the same in practice between both region schemes. Informal regional governance processes scale to match geographical boundaries in READI regions but not EGRs. This implies significantly lower transaction costs for workforce and economic development policy implementation in READI regions when compared to EGRs. Lower implementation costs with no practical loss in regional economic capture make READI regions a socially efficient choice to satisfy Executive Order 45-25.

A notable drawback of READI regions as the scheme of choice is four regions in southern Indiana with commuting tightness of 70.0 or less – Southeast Indiana (55.2), Indiana First (57.6), Accelerate Rural Indiana (66.9), and Our Southern Indiana (68.7). Scores this low signal weak geographic market cohesiveness – a large share of economic value creation in one READI region is tied to another. This reduces the within-region economic multiplier of any workforce or economic development investment made by state government. As what happened in Central Indiana between the first and second READI grant rounds, merger of these regions among themselves or with others is a straightforward way to overcome this problem. If this is not possible, then proposals from these regions deserve higher scrutiny, especially to ensure that an unreasonable share of economic benefits from any state project is not realized by counties outside of Indiana. The non-contiguous nature of counties in Indiana First naturally reduce cohesiveness, but regional policy implementation is still possible with special attention paid the geographical challenges that are created. Even though Indiana First comprises three different geographically separate enclaves, it still has a higher commuting tightness than Southeast Indiana with contiguous counties.

¹Indiana Governor Mike Braun. 2025. *Executive Order 25-45 Standardizing Workforce and Economic Development Regions in Indiana*. State of Indiana, Executive Department, Indianapolis. https://secure.in.gov/gov/files/EO-25-45.pdf.

²Indiana Economic Development Corporation. 2024. *Regions Submit READI 2.0 Proposals*. February 27. https://iedc.in.gov/events/news/details/2024/02/27/regions-submit-readi-2.0-proposals-total-readi-program-expected-to-leverage-billions-more-in-population-growth-and-quality-of-place-investments.

³Indiana Economic Development Corporation. 2024. *READI 2.0 Policy Overview*.

https://wp.indianareadi.com/wp-content/uploads/2024/01/READI-2.0-Policy-Overview.pdf.

⁴Lee, Y., Lee, I. W., & Feiock, R. C. (2012). Interorganizational Collaboration Networks in Economic Development Policy: An Exponential Random Graph Model Analysis. *Policy Studies Journal*, *40*(3), 547-573. https://doi.org/10.1111/j.1541-0072.2012.00464.x

⁵ Beer, A., Ayres, S., Clower, T., Faller, F., Sancino, A., and Sotarauta, M. 2017. Place Leadership and Regional Economic Development: A Framework for Cross-Regional Analysis. *Regional Studies 53*(2), 171–182. https://doi.org/10.1080/00343404.2018.1447662.

⁶Shuey, M. 2024. Central Indiana Nabs \$45M in READI 2.0 Funds. *Indianapolis Business Journal*. April 11.
⁷Indiana Department of Workforce Development. 2023. *Indiana Economic Analysis Report*. October.
https://www.hoosierdata.in.gov/docs/annual_econ_analysis/ETA_INDIANA%20ECONOMIC%20ANALYSIS%2
https://www.hoosierdata.in.gov/docs/annual_econ_analysis/ETA_INDIANA%20ECONOMIC%20ANALYSIS%2
https://www.hoosierdata.in.gov/docs/annual_econ_analysis/ETA_INDIANA%20ECONOMIC%20ANALYSIS%2
https://www.hoosierdata.in.gov/docs/annual_econ_analysis/ETA_INDIANA%20ECONOMIC%20ANALYSIS%2
https://www.hoosierdata.in.gov/docs/annual_econ_analysis/ETA_INDIANA%20ECONOMIC%20ANALYSIS%2
https://www.hoosierdata.in.gov/docs/annual_econ_analysis/ETA_INDIANA%20ECONOMIC%20ANALYSIS%2

⁸Krivacsy, K. 2017. Evaluating Economic Growth Regions for Workforce Innovation and Opportunity Act Requirements. Prepared for the Indiana Department of Workforce Development. Prepared by the Indiana Business Research Center at the Indiana University Kelley School of Business.

https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fhoosierdata.in.gov%2Fdocs%2Fwioaplanning%2FEvaluatingEGRs_WIOA.docx&wdOrigin=BROWSELINK.

⁹Office of Management and Budget. 2000. Standards for Defining Metropolitan and Micropolitan Statistical Areas. *Federal Register* 65(249): 82228-82238. https://www.federalregister.gov/documents/2000/12/27/00-32997/standards-for-defining-metropolitan-and-micropolitan-statistical-areas.

¹⁰Wolman, H. 2019. Looking at Regional Governance Institutions in Other Countries as a Possible Model for U.S. Metropolitan Areas: An Examination of Multipurpose Regional Service Delivery Districts in British Columbia. Urban Affairs Review 55(1): 321-354.

https://gwipp.gwu.edu/sites/g/files/zaxdzs6111/files/downloads/Looking%20at%20Regional%20Governace-%20Multi-Purpose%20Disstricts%20UAR.pdf.

¹¹United States National Archives and Records Administration. 2025. Subpart B – Workforce Innovation and Opportunity Act Local Governance (Workforce Development Areas). *Code of Federal Regulations*, Title 20, Chapter V, Part 679, Subpart B. https://www.ecfr.gov/current/title-20/chapter-V/part-679/subpart-B.

Technical Appendix

Summary of Analysis and Results

The primary purpose of this analysis is to compare the READI, EGR, and MSA geographic boundaries based upon regional economic tightness. The higher is regional tightness, the better the boundary scheme delineates the self-contained regional economies that comprise the state.

Regional tightness has several dimensions, but it is best conceptualized in terms of labor force sheds and commuting distance. A labor force shed is the geographic area from which a commercial center – like the central business district of a metropolitan area – draws its labor force. The reach of a labor shed fades with commuting distance. Boundaries that map where major labor sheds geographically fade to zero perfectly capture the spatial arrangement of economic regions.

Regional tightness is measured by a number between zero and one. A score of one is perfect tightness – 100% of workers in a region live in the region. A score of zero infers no existence of a labor shed – 100% of residents who live in a region work outside of the region. The closer is the tightness score to one, the better the system of regional boundaries maps the state labor sheds.

Using county-level commuting data from the Census Bureau, the analysis finds that the state's overall tightness score for the EGR, READI, and MSA boundary schemes are 0.891, 0.877, and 0.868 respectively. These very close results suggest no noteworthy difference in economic integrity between the boundary schemes. READI is an attractive default scheme for use by state government because their boundaries also capture existing institutional efficiencies produced by historical cooperation between counties, cities, towns, and other local actors within each region. Results suggest that there is no loss of accuracy in capturing economic regions within the state when READI is chosen as the scheme over EGRs and MSAs.

Concepts, Data, and Measures

There are multiple dimensions for which an analyst may consider regarding the principles or characteristics that differentiate one region from another. The Office of Management and Budget (which officially defines the boundaries of MSAs for the federal government) and many regional economists consider commuting patterns to be the primary way to determine economic region boundaries. Commuting patterns have the benefit of aligning with the notion of a labor shed – that individuals typically live and work in regional proximity and that firms operating in a region employ people from their region with the skill and knowledge sets necessary to make them profitable. Properly mapped, an economic region captures all the work and market activity of residents and businesses within it.

Tightness assesses how well a regional boundary definition, be it economic or jurisdictional, performs in terms of bringing residency, work, and market activity together within the same geographic area. A tightness score of one indicates that all residents live and work in the same region. In contrast, a score of zero indicates that all residents living in a region work in other regions. Few if any regions score a perfect zero or one.

Workforce tightness is the inverse of workforce leakage. Leakage occurs when an individual who can work in their home region decides to work in a different region. The lower is tightness, the weaker is the self-sufficiency of a region in terms of housing, employment, production, and consumption. Higher self-sufficiency, though, can reduce economic benefits from regional specialization and scale.

Looseness measures the geographic dispersion of a labor shed and is another way to assess the strength of boundaries in mapping economic regions. A looseness score approaching zero signals a labor shed that is geographically compact, whereas a score approaching one suggests a labor shed that is geographically diffused. Whereas tightness constrains measurement only to the share of those who live and work in the same region, looseness can capture the degree of geographic spread of workers commuting into the region.

Knowledge of looseness can conceptually motivate revision of how counties are aggregated to form regions if transportation dynamics within labor sheds are considered. For example, Bloomington, Columbus, Kokomo, LaFayette and Muncie MSAs each supply, on average, approximately 4,000 workers to the Indianapolis MSA daily. While these numbers are small compared to the 955,000 individuals who live and work in the Indianapolis MSA, they do demonstrate how the Indianapolis labor shed reaches well into several other Indiana MSAs.

Table 1 quantifies the number of commuters (also referred to as O-D counts) between each pair of MSAs. **Table 2** does the same for the EGRs and **Table 3** for the READI regions. The columns, one each for an MSA in Indiana together with one column for all the counties that are not attached to an MSA, represent the residence of origin "O" for workers' commute in the aggregate. In a similar way, the rows represent the location of work, or the destination "D." The values in the table are the counts for each worker with O-D (origin to destination) for these MSAs. The "OoS" row in gray at the bottom sums those Indiana residents who work out-of-state. The most important feature of the table is the green diagonal. This is the sum of residents who live and work in the same MSA, if "O" = "D." The "O-D Total" is the sum of all workers for whom the MSA is the origin, meaning their residence.

The tightness score divides the value in the green cell – when O=D – by the sum of all working residents, the O-D Total. The value in the green cell is "tight" because that is the population working and living in the same region. A tightness score

approaching one means a greater concentration of people who do not commute outside the region for work. Tightness includes neither cross-state leakage (OoS) such as to Illinois, Kentucky or Ohio nor Indiana regional leakage with destination Indiana MSAs outside of the origin region. In other words, if a worker is not counted in the green diagonal, then that worker does not contribute to tightness.

The looseness index is more nuanced. It captures the concentration of workers within the origin region much like the tightness score, but it also captures the intensity of geographical scattering of workers headed to other Indiana destination regions. A large portion of Indiana residents within the Cincinnati MSA and Louisville MSA work out of state. The Indiana area of the Louisville MSA, however, has a larger core of O=D in contrast to the Indiana area of the Cincinnati MSA as reflected in the lower "within Indiana" looseness measure for the Louisville MSA. Neither MSA has a noteworthy scattering of other destination regions. The Lafayette MSA is an example of a good tightness score – almost 0.9 – that also has a relatively high looseness score of 0.18. This motivates the question of how evenly spread are the other destination regions – as there are several – as well revealing that the Lafayette MSA sends some 2,679 workers to the Indianapolis MSA.

When looseness is uncharacteristically high given the tightness of a region, O-D counts that are not along the green diagonal are worth assessment. Off-diagonal O-D counts greater than 2500 are shaded light red in the table. A looseness score approaching zero signals a geographically compact labor shed and approaching one signals a geographically diffused labor shed. Looseness scores for the Evansville, Fort Wayne, and Indianapolis suggest a dispersed spread of worker destinations for these MSAs even if the core O=D count is relatively large. How one large cell or city or region in an O-D array can affect the index is evident for the Cincinnati and Michigan City MSAs. Remove the out-of-state destinations – the OoS row – from the looseness measure for these two MSAs and the looseness index scores drop precipitously.

Table Measures and Definitions

"O-D Total" is the total of all workers who have originated, or resided in, a region as defined by MSA, ERG, or READI boundaries.

"Regional Tightness Score" divides the O=D diagonal value by the O-D Total. It is the percent of workers who live and work in the same region.

"Regional Employment Wt" is the O-D Total for a region divided by the O-D Total for the state equal to 3,158,697 (which is the sum of O-D Total for all regions). This is the weight used in calculating the population-weighted average tightness measure for the MSA, ERG, and READI regional boundary schemes.

"Looseness w OoS (0=low)" includes commuters who originated in Indiana but work in another state (Outside-of-State). Looseness is calculated using the Shannon entropy index which is a measure typically used to assess biodiversity in ecosystems or industrial diversity in regions. It measures whether one or few species are overrepresented in a biological system or whether an economic region has a balanced array of industries for production and consumption.

"Looseness w/in IN (0=low)" limits measurement only to commuters who originated and worked in Indiana. This is also calculated using the Shannon entropy index.

The Indianapolis MSA has the highest tightness score and lowest looseness score of all the Indiana MSAs. The work destinations of Indianapolis residents who commute to other regions are evenly spread throughout the state.

Potential Cautions

The commuting data comes from the U.S. Census Bureau and is subject to margins of error. The motivation for commutes is difficult to identify without extensive and repetitive sampling over time. For example, an electrician using her own car to drive from Indianapolis to a job site in Terra Haute for a month may be mistaken for a year-round commuter between these two locations. A dataset from the Indiana Bureau of Motor Vehicles or Indiana Department of Revenue that geo-positions an individual's home address and work address would be more reliable.

READI geographical boundaries define four noticeably small regions with low tightness scores – Southeast Indiana, Indiana First, Accelerate Rural Indiana, and Our Southern Indiana. These regions face comparative difficulty in capturing geographic economies of scale and scope. This makes them less competitive in any bid for public or private resources, especially with larger regions across the border in neighboring states.

Table 1: MSA Tightness Matrix

ORIGIN (c)	M-NonMSA:	M-Bloo	M-Chic	M-Cinc	M-Colu	M-Elkh	M-Evan	M-Fort	M-Indi	M-Koko	M-Lafa	M-Loui	M-Mich	M-Munc	M-Sout	M-Terr
DESTINATION (r)																
M-NonMSAs	521742	3917	1129	4478	2960	4083	7975	17955	12104	1 2452	5705	4095	605	3310	3370	4663
M-Bloo	8877	70820			157	30	18	76	4249	9	22	75				296
M-Chic	3207	77	240374	129		34		59	213	3 12	836		7921		302	2 65
M-Cinc	3094			17397			20		167	7						
M-Colu	7202	292	18	68	32893		63	89	8569	9 13	39	105		29)	5
M-Elkh	14258		102			83630		434	65	5 7	23	2	208	14	14565	Í
M-Evan	8112	12	18	70			116958	20	96	6	66	47		2	2 36	3
M-Fort	20856	89	60	4	10	155		188716	440	102	47	1	24	249	43	3 15
M-Indi	27545	4650	337	412	3139	61	285	948	955777	7 3445	2679	276	82	6357	194	1709
M-Koko	5962	25	20		14	16		31	3640	29311	. 754			70)	
M-Lafa	11231	24	792			54	91	16	3173	3 872	97172	12	55		87	7 133
M-Loui	4596	16	20		68		46	24	133	3	5	81925	9	19	11	19
M-Mich	1104		5983			45	2	27	32	2 7	39		31873		1007	7
M-Munc	5408	5	11	21		6	22	152	4342	2 15	9	16		40642	19)
M-Sout	4948		687			6703		161	134	1	23		2999	36	102452	2
M-Terr	5218	320					69	50	1046	3	118		6	27	,	65988
0oS	22256	680	64075	16170	269	1688	3880	2264	7497	7 281	. 1157	38513	3493	778	5200	2365
O-D Total	675616	80927	313626	38749	39510	96505	129429	211022	1001677	7 36520	108694	125067	47275	51533	127286	75261
Regional Tightness Score	N/A	0.88	0.77	0.45	0.83	0.87	0.90	0.89	0.95	0.80	0.89	0.66	0.67	0.79	0.80	0.88
Regional Employment Wt	0.21	0.03	0.10	0.01	0.01	0.03	0.04	0.07	0.32	0.01	0.03	0.04	0.01	0.02	0.04	0.02
Looseness w OoS (0=low)	0.39	0.21	0.25	0.49	0.30	0.22	0.16	0.15	0.10	0.30	0.18	0.33	0.43	0.30	0.29	0.22
Looseness w/in IN (0=low)	0.36	0.20	0.13	0.34	0.30	0.20	0.12	0.14	0.09	0.29	0.16	0.18	0.37	0.28	0.25	0.18

Table 2: EGR Tightness Matrix

EGR ORIGIN (c)	R_01: Gary	R_02: So Ben	R_03: Ft Wyn	R_04: LaF-Kol	R_05: Indy	R_06: Mun-Ro	R_07:TerHau	R_08: Blm-Jsp	R_09: Col-Bat	R_10: New All	R_11: Evansv
EGR DESTINATION (r)											
OoS	67896	7439	6331	2975	7380	6484	2545	1503	21712	39277	7024
R_01: Gary	296712	2773	229	2804	236	32	74	88	189	6	35
R_02: So Bend	7861	275228	13688	1264	370	156			12	3	29
R_03: Ft Wyn	209	6325	336383	2663	1788	4113	78	188	61	14	11
R_04: LaF-Kok	2386	963	2146	212410	9309	337	1671	100	30	28	163
R_05: Indy	493	456	2777	13130	943649	17839	6143	7271	5780	326	483
R_06: Mun-Rch	40	58	2147	131	6968	116518	24	130	1118	22	52
R_07: TerHau	6	5	94	904	2362	42	84925	2721	3	4	509
R_08: Blm-Jsp	19	92	156	46	4207	32	1393	130455	757	1084	2246
R_09: Col-Batv	69	14	185	81	10146	1783	16	2359	127084	2797	142
R_10: New Alb	29	11	33	9	188	47	34	866	2126	94552	293
R_11: Evansv	18	36	58	103	371	18	900	5407	108	1022	197384
O-D Total	375,738	292,460	364,227	236,520	986,974	147,401	97,803	151,088	158,980	139,135	208,371
Regional Tightness Score	0.79	0.94	0.92	0.90	0.96	0.79	0.87	0.86	0.80	0.68	0.95
Regional Employment Wt	0.12	0.09	0.12	0.07	0.31	0.05	0.03	0.05	0.05	0.04	0.07
Looseness w OoS (0=low)	0.25	0.13	0.15	0.19	0.11	0.31	0.23	0.25	0.28	0.32	0.11
Looseness w/in IN (0=low)	0.13	0.09	0.13	0.18	0.09	0.26	0.20	0.24	0.18	0.18	0.06

Table 3: READI Tightness Matrix

ORIGIN (c)	READI-01: Gary	READI-02: So Bend / Elkhart	READI-03: Ft Wayne	READI-04: Lafayette	READI-05: Kokomo	READI-06: Muncie / Richmond	READI-07: Terra Haute	READI-08: Indy+	READI-09: Shelbyville	READI-10: Southeast	READI-11: Uplands	READI-12: Columbus	READI-13: SW River	READI-14: New Albany	READI-15: Evansville
DESTINATION (r)															
OoS	67896	7072	6405	2358	691	5498	2455	7367	297	20717	2222	680	8023	34803	4082
READI-01: Gary	296712	2167	307	2059	1273	32	74	236	51	138	88		33	6	2
READI-02: So Bend/Elkh	7518	229102	13779	60	1446	109		263					30	14	
READI-03: Ft Wayne	262	5275	347326	125	3175	4185	58	695	25	9	194	32	1	13	5
READI-04: Lafayette	2100	197	108	130578	6371	120	999	5086	36	12	85		25	23	111
READI-05: Kokomo	494	477	1496	3450	78115	1340	43	4847		1	25	14	33		
READI-06: Munc/Rchmd	118	169	3145	50	1223	134844	9	7346	606	1456	80	52		16	22
READI-07: Terra Haute	6		50	725	16	58	71832	1555		3	2145		427		72
READI-08: Indy +	493	300	1552	5403	7984	15440	3996	936878	9499	471	7911	3267	170	273	318
READI-09: Shelbyville	4	11	11			2511		5252	28084	2927	103	986	1	67	58
READI-10: Southeast			24	8	7	696		255	999	33735		184		211	22
READI-11: Uplands	19	44	189	24	22	53	1181	4420	95	57	155222	630	6293	926	1244
READI-12: Columbus	69		103	45	21	127	16	6717	2224	710	2353	66574	5	2999	90
READI-13: SW River			1		1	5	543	271		24	4060	6	33530	1843	1920
READI-14: New Albany	29	11	32	5	3	47	19	337	81	764	1150	1617	4154	90491	33
READI-15: Evansville	18	36	54	103		11	308	86	10	70	1315		5516	88	137866
O-D Total	375738	244861	374582	144993	100348	165076	81533	981611	42007	61094	176953	74042	58241	131773	145845
Regional Tightness Score	0.79	0.94	0.93	0.90	0.78	0.82	0.88	0.95	0.67	0.55	0.88	0.90	0.58	0.69	0.95
Regional Employment Wt	0.12	0.08	0.12	0.05	0.03	0.05	0.03	0.31	0.01	0.02	0.06	0.02	0.02	0.04	0.05
Looseness w OoS (0=low)	0.23	0.08	0.11	0.18	0.37	0.23	0.18	0.10	0.35	0.27	0.20	0.17	0.47	0.30	0.10
Looseness w/in IN (0=low)	0.12	0.08	0.11	0.15	0.32	0.23	0.17	0.09	0.35	0.27	0.20	0.16	0.38	0.18	0.07